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Abstract

INTRODUCTION: Up to 20% of older adults in the United States have mild cognitive

impairment (MCI), and about one-third of people with MCI are predicted to transition

to Alzheimer’s disease (AD) within 5 years. Standard cognitive assessments are long

and require a trained technician to administer. We developed the first computerized

adaptive test (CAT) based on multidimensional item response theory (MIRT) to more

precisely, rapidly, and repeatedly assesses cognitive abilities across the adult lifespan.

Wepresent results for aprototypeCAT (pCAT-COG) for assessmentof global cognitive

function.

METHODS: We sampled items across five cognitive domains central to neuropsy-

chological testing (episodic memory [EM], semantic memory/language [SM], working

memory [WM], executive function/flexible thinking, and processing speed [PS]). The

item bank consists of 54 items, with 9 items of varying difficulty drawn from six differ-

ent cognitive tasks. Each of the 54 items has 3 response trials, yielding an ordinal score

(0–3 trials correct). We also include three long-term memory items not designed for

adaptive administration, for a total bank of 57 items. Calibration data were collected

in-person and online, calibrated using a bifactor MIRT model, and pCAT-COG scores

validated against a technician-administered neuropsychological battery.

RESULTS: The bifactorMIRTmodel improved fit over a unidimensional IRTmodel (p<

0.0001). The global pCAT-COG scores were inversely correlated with age (r = –0.44,

p< 0.0001). Simulated adaptive administration of 11 itemsmaintained a correlation of

r = 0.94 with the total item bank scores. Significant differences between mild and no

cognitive impairment (NCI) were found (effect size of 1.08 SD units). The pCAT-COG

correlated with clinician-based global measure (r= 0.64).

DISCUSSION:MIRT-based CAT is feasible and valid for the assessment of global cog-

nitive impairment, laying the foundation for the development of a full CAT-COG that

will draw from amuch larger item bankwith both global and domain specific measures

of cognitive impairment.
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Highlights

∙ As Americans age, numbers at risk for developing cognitive impairment are increas-

ing.

∙ Aging-related declines in cognition begins decades prior to the onset of obvious

cognitive impairment.

∙ Traditional assessment is burdensome and requires trained clinicians.

∙ Wedeveloped an adaptive testing framework usingmultidimensional item response

theory.

∙ It is comparable to lengthier in-person assessments that require trained psychome-

trists.

1 BACKGROUND

As the country’s population ages, the number of older adults at risk for

developing cognitive impairment is poised to increase substantially. It is

estimated that up to 20%of people over 65 havemild cognitive impair-

ment (MCI), and up to one-third with MCI transition to Alzheimer’s

dementia (AD) within 5 years, the most common form of dementia.1

While AD is currently irreversible, there are promising interventions

to slow its progression. This would be greatly facilitated by measuring

early stages of cognitive decline in young adults which is a key risk fac-

tor for dementia and other health problems later in life.2,3 Precise and

repeatable measures of cognitive ability are essential for diagnosing

MCI and dementia, as well as basic research applications, such as val-

idating new biomarkers and characterizing the cognitive variability in

healthy adult samples for behavioral research.4

Standardized cognitive task batteries administered via neuropsy-

chological evaluation have long been the gold standard; data suggest

that some domains of age-related change in cognitive performance can

begin in early adulthood.5 Although longitudinal designs are needed

to assess cognitive change in different cognitive domains from early

to late adulthood,6,7 the repeated administration of traditional mea-

sures is costly (i.e., lengthy in-person test sessions), introduces practice

effects on repeated items that can obscure cognitive changes,8,9 and

floor and ceiling effects when testing younger and older adults both

with andwithout cognitive impairment. These obstacles limit cognitive

testing in younger populations, limit access to cognitive assessment

in underserved populations, and limit the interpretation of repeat

assessments over time.

By leveraging recent technology in cloud-based computing as well

as in CAT, we are positioned to overcome these limits and greatly

enhance the speed, precision, and frequency of cognitive assessment

over time. Researchers have demonstrated that administering cogni-

tive tests online is feasible, equally reliable,10,11 and well tolerated

by younger and older participants. Sliwinski12 demonstrated very

high (>0.97) reliability using brief, ambulatory measurement of stan-

dard (non-adaptive) cognitive tasks in a diverse sample (25–65 years,

see also Brouillette13). Importantly, Sliwinski12 also reported signifi-

cant yet lower within-person reliability (0.41–0.53), highlighting the

need to developmore precise assessment tools. Existing computerized

approaches that repeatedly use the same items cannot overcome this

limitation, as they rely on adirect and simplified translationof cognitive

tasks for computers (or smart devices). However, recent advances in

MIRT14 havemade it possible todevelop adaptive cognitive tests based

on very large item banks, to measure an individual’s global cognition

as well as several (sub)domains (e.g., memory or language). These tech-

niques can increase precision while using far fewer items, dramatically

reducing assessment time, and providing constant measurement pre-

cision across the entire range of cognitive ability, enhancing detection

of cognitive impairment at its onset.14 Current uses of IRT for cognitive

tests are unidimensional and limited to specific domains (e.g., NIHTool-

box usesCATonly for a single language task), and so donot harness this

full potential.

The most popular relatively brief cognitive screeners are the Mini

Mental Status Exam (MMSE) and the Montreal Cognitive Assessment

(MoCA).While their brevity is attractive, they are imprecise compared

to longer test batteries, do not assess cognitive subdomains, subject to

learning confounds (e.g., repeatedly being asked to identify a picture of

a rhino),15 and suffer from significant ceiling and floor effects.

MIRT-based CAT has already enjoyed considerable success in

the measurement of mental health and substance use disorders and

suicide risk stratification.16 For example, Gibbons17 demonstrated

that diagnosis of major depressive disorder could be obtained in

less than a minute and maintain sensitivity of 0.95 and specificity of

0.87 relative to an hour-long DSM-5 structured clinical interview.

Gibbons18 showed that a 389-item bank for depression could be adap-

tively administered in 2 min (average of 10 items) while maintaining

correlation of r = 0.95 with the 389-item bank score. Similar results

have been obtained for other psychiatric conditions,19–22 in English
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and Spanish23 and diverse environments (primary care, emergency

medicine, and clinics24–27). Current applications of the CAT-MH (the

collection of these adult CATs) include the largest national survey of

mental health and substance use disorders28; availability in all United

States Department of Veterans Affairs (US VA) clinics29; and screening

community college students for mental health disorders and suicide

risk in California.30

In addition to measuring global cognition, more precise measure-

ment of different cognitive subdomains is critically important in

research and practice. For example, processing speed (PS) and episodic

memory (EM) exhibit more rapid age-related decline compared to

semantic memory.8 PS is sensitive to white matter degradation with

aging and cerebrovascular disease, whereas EM is sensitive to patho-

logical decline in medial temporal regions that characterize MCI and

AD,31,32 highlighting the need to assess specific cognitive domains.

Todemonstrate feasibility,we created apilot bankof cognitive items

designed specifically for adaptive administration to assess global cog-

nitive ability. The itemswere drawn from five domains,33 with one task

representing the domains of EM, PS, semantic memory/language (SM),

and working memory (WM), and two tasks tapping the executive func-

tion domain, which we refer to here as flexible cognition/reasoning

(FC). We call this pilot CAT the prototype CAT (pCAT-COG), which

is foundational to the development of the full CAT-COG. Here we

describe the item bank, model calibration, validation of the items in the

pCAT-COG, andvalidationof the resulting estimatedprimary cognitive

dimension score. The CAT-COG will be based on a nine-fold expan-

sion of the item bank and add scoring of the five domains in addition

to the global cognition dimension. The CAT-COG will be implemented

in a cloud-computing environment (see SupplementaryMaterial A).

2 METHODS

Thedevelopment of the pCAT-COG is amultistep process that involves

(i) the creation of an item bank suitable for adaptive testing, (ii) cali-

bration of items on participant samples, (iii) item analysis, (iv) selection

of CAT tuning parameters, and (v) validation against extant cognitive

measures and clinical diagnostic categories (MCI).

2.1 Participants

We collected calibration data from both in-person and online sam-

ples. In-person data were collected by the Rush Alzheimer’s Disease

Center (RADC)34 and yielded 84 participants (age 18–101 years

[mean = 77.42, SD = 7.55], 66% female, 0% Hispanic individuals, mean

years of education 16.47 [SD = 2.59], 99% White individuals, and 1%

Black individuals), who were administered (i) the complete RADC neu-

ropsychological battery35 and (ii) in a separate session, the pCAT-COG

task. Twenty-four RADCparticipants hadMCI, and one hadMCI/early-

AD. We also recruited 646 participants online (Prolific), (18–89 years

of age [mean = 48.41, SD = 20.42], 53% female, 2% Hispanic individu-

als, mean years of education 14.99 [SD= 3.80], 81%White individuals,

7%Black individuals, and 8%Asian individuals), fromwhichwe created

RESEARCH INCONTEXT

1. Systematic review: With the aging of the American

population, the number of older adults at risk for devel-

oping cognitive impairment has increased substantially.

Recent research points to aging-related change in cogni-

tive performance beginning decades prior to the onset of

cognitive impairment, highlighting the need for cognitive

assessment that is valid across the entire adult lifespan.

2. Interpretation: Cognitive function has long been

assessed using standardized cognitive tasks admin-

istered via neuropsychological evaluation, requiring

lengthy in-person assessments with trained personnel.

We developed a new approach based on a computerized

adaptive test (CAT) developed through multidimensional

item response theory (MIRT) to assess cognitive function,

either in clinic or remotely (online).

3. Future directions: Our approach will revolutionize

computer-based cognitive testing (ultimately in a plat-

form independent way), providing precise estimation

of an individual’s cognitive ability overall and on spe-

cific domains with minimal respondent burden, using a

sufficiently large bank of items so that the same individ-

ual’s cognitive ability can be assessed repeatedly and

efficiently without reusing items or stimuli.

the pCAT-COG. The final CAT-COG will be based on a sample that is

more nationally representative in terms of racial/ethnic diversity.

2.2 RADC core measures and assessments

Cognitive function is tested in the RADC cohort studies via a battery

of tests administered annually as home visits.35 Nineteen tests across

a range of cognitive abilities are used to construct a global composite

measure of cognitive function and separate summary measures of five

domains similar to those in the pCAT-COG.

2.3 pCAT-COG item bank

ThepCAT-COG included six cognitive tasks: episodic recognitionmem-

ory, object naming, PS, digit span forward and backward, Stroop, and

rule identification. For each of these tasks, we included 9 items (three

trials each) that varied in difficulty, yielding 54 items.We also included

nine EM trials (word stimuli – three ordinal items), to compare longer

delay to our EM items with a shorter delay that are designed for adap-

tive testing. The pCAT-COG starts with an instruction phase with a

practice item for each task type (approximately 5 min, repeatable),

and then to simulate adaptive testing conditions, we administered the

items in (i) three blocks of increasing difficulty, and (ii) within each

block, randomly administered to mimic participants’ ability to switch
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between item-types similar to howaCATwould be administered.More

details of the six pCAT-COG tasks are presented in the Supplementary

Material B.

2.4 Bifactor model

To estimate a person’s cognitive ability on the global dimension when

the items are sampled from five different cognitive domains, we used

a bifactor MIRT model for ordinal response data.14 Traditional IRT

assumes that the item-intercorrelations are completely explained by

a single latent variable. For complex constructs like cognition, made

up of multiple domains, this assumption is invalid and can yield biased

estimates of itemparameters, ability estimates and their uncertainty.14

To accommodate multidimensionality, the bifactor model allows each

item to load on the primary dimension and one subdimension that

describes the domain from which the item was selected (e.g., WM).

The bifactor model has the advantage of estimating a cross-cutting

measure of ability while at the same time incorporating multidimen-

sionality, also simplifying adaptive testing. Briefly, the bifactor model

for a binary response item (used here for simplicity) is described by the

factor patternmatrix

𝛼 =

⎡⎢⎢⎢⎢⎢⎣

𝛼11 𝛼12 0

𝛼21 𝛼22 0

𝛼31 0 𝛼33

𝛼41 0 𝛼43

⎤⎥⎥⎥⎥⎥⎦
where for this four-item example the first column describes the pri-

mary dimension upon which all items load and the second and third

columns describe domain-specific factors (e.g., EM and PS), which

absorb the residual correlation between items drawn from a specific

domain. The marginal probability of the response pattern for subject i

is given by

P = ∫
∞

−∞

⎧⎪⎨⎪⎩
d∏

v=2
∫

∞

−∞

⎡⎢⎢⎢⎣
n∏
j=1

⎛⎜⎜⎜⎝
Φ

⎡⎢⎢⎢⎣
𝛾j − 𝛼j1𝜃1 − 𝛼jv𝜃v√

1 − 𝛼2j1 − 𝛼2jv

⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎠

𝜐jv ⎤⎥⎥⎥⎦
g(𝜃v)d𝜃v

⎫⎪⎬⎪⎭
g(𝜃1)d𝜃1,

where γj is a threshold that represents the difficulty of the item, α j1 is

the loading of item j on the primary dimension, α jν is the loading of item

j on the domain-specific factor ν, θ1 and θν are the abilities on the pri-

mary and domain-specific factors, u jν is an indicator for the domain

from which item j was drawn, Φ is the cumulative normal distribu-

tion function, and g is the distribution of the latent variable θ. Further
details are presented in the Supplementary Material C. The bifactor

model for the pCAT-COG included a primary dimension and the five

cognitive domains that form the basis of the item bank.

2.5 Model calibration

First, items were inspected for zero frequency score categories and

eliminated as too easy or too difficult. Second, overall model fit was

determined by comparing observed versus estimated response pro-

portions over all items and response categories and computing their

correlation. Third, we also compared models using the ordinal scoring

(number correct out of three similar tasks) and analysis of the individ-

ual binary tasks.We studied our Stroop test, since preliminary analysis

revealed that it is essentially unidimensional. This allowed us to com-

pare two different modeling approaches; a graded unidimensional IRT

model for the nine ordinal items and a binary bifactormodel (the equiv-

alent of a testlet IRT model14) that accommodated the nesting of the

three binary response trials within each of the nine items. Fourth, we

compared on-line and in-person percentage correct item responses

in age-matched cognitively normal older adults to explore potential

bias in mode of administration. Fifth, using our in-person sample, we

compared performance of two kinds of EM items.

2.6 Model selection

Weused Bayesian information criterion (BIC), where a smaller number

indicates better fit of the model to the data, to select the most parsi-

monious model among three alternatives: a unidimensional IRTmodel,

the best fitting (in terms of number of dimensions) unrestricted MIRT

model, and a bifactorMIRTmodel.

2.7 Validation

Pearson product-moment correlation coefficients were used to assess

the association between pCAT-COG scores and age, and the RADC

composite measure. Student’s t-tests were used to compare older

RADC participants with and without MCI, and effect sizes were com-

pared between the pCAT-COG, RADC composite measure, and the

MoCA.

3 RESULTS

3.1 Feasibility of the pCAT-COG Items

All onlineparticipants across the aging spectrumwereable to complete

the pCAT-COG on their own, and only 17/84 elderly RADC partici-

pants required help of an RA. Only 3 (MCI) of the 84 participants had

difficulty understanding the instructions for some tasks, and 83/84

completed the pCAT-COG.

3.2 Item difficulty

For RADC participants, we found significant differences in perfor-

mance (the proportion of trials correctly answered) across items we

designed to be easy versus hard on each task: RuleID 0.94 (SE= 0.026)

> 0.67 (SE = 0.051), Stroop 0.69 (SE = 0.050) > 0.64 (SE = 0.052), EM

0.90 (SE = 0.033) > 0.68 (SE = 0.051), PS 0.67 (SE = 0.051) > 0.32
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(SE = 0.051), SM 0.99 (SE = 0.011) > 0.94 (SE = 0.026), span 0.70

(SE = 0.050) > 0.51 (SE = 0.055) (all p’s < 0.05). As expected SM was

relatively easy for all participants, as well as the Stroop, which did not

achieve a wide range of difficulty. We removed the hardest span items,

as they were too hard for MCI, and we excluded these items from pre-

liminary analyses. These results demonstrate that we can create items

with sufficient variability in difficulty to measure participant ability

across the aging spectrum.

3.3 Estimated adaptive test timing

The cognitively unimpaired online participants usually required only

one instructional/practice phase (∼5 min), and on average, they com-

pleted the 57 items in 34.2 min SD = 9.3 min (36 s per item) across

the wide age range (upper limit = 39.7 m (SD = 7.3) for those in 76–

86 age range). The simulated pCAT-COG required an average of 11

items in order to reproduce the total item bank score with correlation

of r = 0.94. This translates to an average of 6.5 min plus 5 min of prac-

tice, or a total of 11.5min to assess global cognition. By comparison, the

RADC battery takes 60–90 min by a trained administrator. MCI par-

ticipants with in-person help took the longest on average, completing

the 57 item pCAT-COG item bank in 47.3 min, SD = 9.4 min (49 s per

item), 9 min of task, plus 1–2 practice/instruction rounds (5–10 min),

or 14–19min to estimate global cognition inMCI.

3.4 Online and in-person sample comparison

We compared an age-matched subset of cognitively normal older

adults testedonline (Prolific,n=45,meanage=79years, range76–86)

and tested in-person (RADC, n= 35, mean age= 79 years, range= 69–

87). Using classical scoring of the pCAT-COG task (percent correct),

we found nearly identical performance between these two samples on

five pCAT-COGmeasures (EM, short delay= 0.82 [SE= 0.057] vs. 0.81

[SE = 0.066]; EM, long delay = 0.70 [SE = 0.068] vs. 0.74 [SE = 0.074];

SM=0.95 [SE=0.032] vs. 0.97 [SE=0.029]; Stroop=0.72 [SE=0.067]

vs. 0.71 [SE= 0.077]; Rule ID= 0.84 [SE= 0.055] vs. 0.81 [SE= 0.066]).

The only difference was in the speed task (0.64 [SE = 0.072] vs. 0.53

[SE=0.084]), as older participants tested onlinewere somewhat faster

than those tested in-person. These data demonstrate that online and

in-person testing can yield meaningful and comparable older adult

data.

3.5 Episodic item delay

In the RADC sample, we found performance on the adaptive EM items

(which use a 15 s math filler task between study and test to clear WM

rehearsal) correlated highly with the longer-delayed EM items (given

at the end of the entire pCAT-COG task, r = 0.64, p < 0.001). Although

the immediate items were easier than the delayed items (proportion

correct 0.76 [SE = 0.047] vs. 0.64 [SE = 0.052], p < 0.01), these two

kinds of EM items had comparably high correlations with the RADC

EM composite score, which pools immediate and delayed item recall

(r = 0.56) and recognition and story memory (r = 0.60). Item discrim-

ination parameters were also equivalent between shorter and longer

delayed EM items.

3.6 Model calibration

After removing the 5 hardest span items, 46 ordinal items remained for

a total of 46 * 3 = 138 binary trial items (excludes three long-term EM

items). The fit of the bifactor model to the observed data was excellent

(see Figure 1, r = 0.99 between the observed and estimated propor-

tions). For example, for item10, 65.8% of the sample received a perfect

score of 3 and themodel estimate was 65.7%.

3.7 Validation

The primary (global) dimension was significantly (inversely) associated

with age (r = –0.44, p < 0.0001), see Figure 2. As shown in Figure 2,

there is a linear decrease in global cognitive ability with age (plotted at

decilemidpoints), from ages 35 to 75 years, with amore rapid decrease

of 0.8 SD units from ages 75 to 85 years.

The primary pCAT-COG measure for global cognition was strongly

correlated with the RADC Global dimension (r = 0.64), as well as the

other RADC composite scores with large effect sizes (Figure 3). The

pCAT-COGscores significantly differentiated olderRADCparticipants

with MCI (n = 25) and no cognitive impairment (NCI, n = 46, t = 4.4,

df = 69, p < 0.0001) with effect size of 1.08 SD units, similar to the

effect size for the RADC global composite (effect size = 1.47 SD units)

and the MoCA (effect size = 1.14 SD units). Note that this is a lower

bound on the final CAT-COG effect size, since the pCAT-COG is based

on only 10% of the final item bank being developed. Although we refer

to RADC as a “gold standard,” there is no perfect way of measuring

cognitive function.

3.8 Model selection

For the unrestricted MIRT models, the one-factor (traditional unidi-

mensional IRT model) had BIC = 54,209, and the best fitting MIRT

model was the four-factor model BIC= 53,593, with both three-factor

and five-factor models exhibiting poorer fit (BICs 53,649 and 53,823

respectively). The best fitting 4-factor MIRT model produced factors

with (1) amixof SMandexecutive function items, (2) amixof SMandPS

items, (3) amix of executive function and PS items, and (4) amix ofWM

and executive function items.We are unaware of any neuropsycholog-

ical theory that would naturally group these tasks in this way, and in

fact, the theoretically-guided bifactor model exhibited the best fit of

all models tested with BIC = 53,106 for the bifactor model with a pri-

mary and five pre-specified cognitive domains. Another advantage of

the bifactormodel is that it provides a global cognitive ability estimate,

whereas the unrestricted MIRT model did not. For many applications

the global scoremaybe all that is required, further reducing participant

burden.
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3.9 Results for binary trial versus ordinal item
scoring

Comparison of item parameter estimates based on ordinal and binary

task scoring revealed that the ordinal item scoring produced a wider

range of thresholds (–2.44 to 0.31) than the binary trial scoring (–1.61

to –0.15), indicating that the ordinal scoring yields more information

across the ability range. In terms of the estimated factor loadings, the

ordinal scoring yielded large and homogeneous loadings across all nine

ordinal items (0.65 to 0.79), whereas the binary trial model showed

more heterogeneity with some trials less strongly related to the latent

primary dimension (0.31 to 0.80). The twomodel results are highly cor-

related (r= 0.99), however, the ordinal model had greater precision for

themost cognitively impaired participants (Figure 4).
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4 DISCUSSION

Wedeveloped and tested a newapproach to testing cognitive function.

Applying adaptive testing to cognitive assessment and represent-

ing cognition through a multidimensional model are the two key

innovations, allowing more rapid, precise, accessible, and repeatable

measurements. Traditional measurement fixes the number of items

administered and allows measurement uncertainty to vary. By con-

trast, a MIRT-based CAT fixes the acceptable level of measurement

uncertainty and allows the number of items to vary to achieve that

level. This innovation dramatically reduces the number of items

needed to measure cognitive ability with higher precision than tra-

ditional fixed-length tests. To date, most cognitive assessments have

been based on classical test theory (380 out of 384 based on a recent

review36) and the few IRT applications were non-adaptive and based

on unidimensional IRT models which provide poor fit to these data

as we showed. By contrast, MIRT allows us to measure global and

ultimately domain-specific cognition, and CAT will select an optimal
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set of test items for each individual targeted to their level of cognitive

ability.

Our pilot study had limitations as well. First, future work will need

to incorporate a more diverse sample with more Hispanic and Black

participants and fewer years of education and examine measurement

invariance. Second, the pCAT-COG was studied by simulating adap-

tive administration from complete item responses and therefore does

not directly test adaptive administration. Historically, results are quite

similar.18,21–23 Third, our results are for the pilot item bank, and may

not fully generalize to the much larger item bank currently being

collected.

The advantages ofMIRT-basedCAT have the potential to transform

cognitive assessment, improving cognitive screening and associated

health outcomes (clinical impact) and allowing researchers to ask new

kinds of questions (scientific impact). In addition to in-person admin-

istration in clinical, healthcare, or research settings, we demonstrated

that a CAT-COG can be self-administered online, at home, in cogni-

tively unimpaired younger and older adults. Increasing accessibility

in this way will allow earlier detection of cognitive decline, including

in populations that face barriers to assessment in formal healthcare

settings. It also would facilitate large-scale descriptive and etiologic

studies of individual or population-level cognition and permit high fre-

quency cognitive assessments over short timespans within individuals

(i.e., burst designs to capture intra-individual variability). It would allow

a more precise and multidimensional cognitive assessment in omnibus

population surveys. This would yield new kinds of data that can cat-

alyze discoveries across the adult lifespan. For example, the ability to

make frequent assessments will revolutionize research on the possible

acute effects of major life events or risky behaviors on cognitive abil-

ity (e.g., new health problems or treatments, retirement, and losing a

spouse). The possibility of online self-administration will allow for the

concurrent measurement of transient psychological or physiological

states (via self-report and biosensors) aswell as environmental factors,

such as amount of sleep, time-of-day,weather events, or diet, leading to

newdiscoveries of the impact of such factors on cognitive ability across

adulthood and among those withMCI.
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